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Abstract: Many cities around the world encourage the transition to battery-powered vehicles to
minimize the carbon footprint of the transportation sector. Deploying large-scale wireless charging
infrastructures to charge electric transit buses when loading and unloading passengers have become
an effective way to reduce emissions. The standard plug-in electric vehicles have a limited amount of
power stored in the battery, resulting in frequent stops to refill the energy. Optimal siting of wireless
charging bus stops is essential to reducing these inconveniences and enhancing the sustainability
performance of a wireless charging bus fleet. Wireless charging is an innovation of transmitting
power through electromagnetic induction to portable electrical devices for energy renewal. Online
Electric Vehicle (OLEV) is a new technology that allows the vehicle to be charged while it is in
motion, thus removing the need to stop at a charging station. Developed by the Korea Advanced
Institute of Science and Technology (KAIST), OLEV picks up electricity from power transmitters
buried underground. This paper aims to investigate the cost of the energy logistics for the three types
of wireless charging networks: stationary wireless charging (SWC), quasi-dynamic wireless charging
(QWC), and dynamic wireless charging (DWC), deployed at stops and size of battery capacity for
electric buses, using OLEV technology for a bus service transit in the borough of Manhattan (MN) in
New York City (NYC).

Keywords: electric buses; wireless charging; dynamic wireless charging electric vehicle; New York City

1. Introduction

In recent years, the need to develop alternative solutions to traditional energy sources,
such as fossil fuels, has become imperative for sustainable cities. Thus, Electric Vehicles
(EVs) reduce the need for fossil fuels and provide a better living environment. Since transit
is the main source of fuel consumption, the development of electric buses has become
a priority.

Earlier research focused on plug-in and conductive solutions for charging the EVs and
has considered the challenges of incorporating this technology into electricity networks [1].
Plug-in EVs have a limited travel span and require heavy and large batteries. The standard
plug-in electric vehicles have a reduced amount of power stored in the battery, resulting in
recurrent stops to refill the power. Therefore, conductive charging strategies involve long
waiting times, limiting the pertinence of EVs compared to fuel-combustion-powered vehicles.

More recent studies have shown the benefits and advantages of pure electric vehicles,
compared to fuel combustion-based cars or hybrid EVs, in terms of their environmental
effects [2]. Nevertheless, these benefits may be offset by the limited amounts of energy
stored in their batteries. To make EVs even worse, charging with the fastest charger requires
at least 30 min [3]. To fill this gap, the use of Remote Charging Technology, also known
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as wireless charging [4,5], has been tested and implemented. Wireless charging is an
innovation of transmitting power through electromagnetic induction to portable electrical
devices to ensure optimized energy renewal.

In public transportation system operations, there are three different types of wireless
charging systems, to be specific, (a) stationary wireless charging (SWC), the charging only
happens when the vehicle is parked or idle, (b) quasi-dynamic wireless charging (QWC),
when a vehicle is moving slowly or in stop-and-go mode the power is transferred, and
(c) dynamic wireless charging (DWC), the charging can be provided even when the vehicle
is moving (Ulrich, 2012).

In New York City (NYC), the New York City Transit Authority (NYCTA) manages the
most extensive public bus fleet in the United States, including 5710 public buses, serving
over 764 million people per year, with 238 routes, with nearly 54,000 average weekday
trips and 16,350 bus stops [6].

This paper compares the cost of the energy logistics for the three types of wireless
charging networks (SWC, QWC, and DWC), using OLEV technology for a bus service
transit in the borough of Manhattan (MN) (Figure 3) in NYC, where most of the trips are
made, investigating bus routes to determine the optimum study area for planning out the
costs of deploying a pilot service network.

The OLEV technology currently operates in several bus transits worldwide, including
Seoul Grand Park and Gumi City transit lines in South Korea. There are three different
categories of wireless charging systems (Figure 1) where OLEV can be used:

(a) stationary wireless charging (SWC),
(b) quasi-dynamic charging (QWC), and
(c) dynamic wireless charging (DWC).
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SWC is only parked or idle charging, QWC is when a vehicle is moving slowly or is
in stop-and-go mode, and DWC is supplied even when the vehicle is in motion. The cost
and benefit of each system depends on various factors, such as route and fleet size, service
range, battery prices, and installation cost [2,5].

OLEV technology has its sights set on economizing and sustaining the performance of
industrial and commercial electric vehicles, with its current focus being bus transits. This is
achieved by reducing the number of batteries required to operate the bus service, reducing
the vehicle’s cost and weight while always staying in service with its efficient, wireless
charging technology.

The quantity of charging on each power track required for a DWC system is a function
of vehicle speed and the elapsed time spent on that power track. In the conventional
station allocation problem, the vehicle speed is not related to the allocation. Therefore, for
optimum results, the system implementation should be in places where bus speeds are
very low (bus stops, streets historically known for slow traffic). The median speed data,
shown in Figure 3d is established on GPS bus data time, which indicates the location of
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individual buses over time on their routes. The data were collected between 4 p.m. and 6
p.m. every typical weekday in 2017 [7].

2. Literature Review

The public bus system helps to reduce traffic congestion and exhaust emissions [8].
However, due to vehicle technology limitations, diesel-powered buses still dominate
today’s bus fleet. Various regulations related to the problem of battery size, cost, and life of
onboard batteries have restricted the popularity of electric buses [9].

Wireless charging technology is changing the form of energy transfer and utilization.
Since its initial concept, suggested by Bolger et al. [10], significant technological achieve-
ments have been made in developing wireless charging. The development of wireless
charging technology is surveyed by Wang et al. and Covic et al. [11,12]. To eliminate
cables and dangerous sparking, wireless charging has been actively investigated in transit
applications, such as charging, for electric vehicles [2].

Studies investigating how the charging strategy for e-buses interacted with the power
grid [13] were based on charging infrastructure comparison [14,15], and the Battery Man-
agement Systems [9,16,17]. Ke et al. [18] proposed a model for simulating the operation and
battery charging schedule of plug-in e-buses and determined the minimum construction
cost of an all-plug-in electric bus transportation system. The OLEV system is the first
successfully commercialized EV wireless charging system [19–21]. Related to wireless
charging, Manshadi et al. [22] present the advantages of wireless charging stations, regard-
ing electricity costs and congestion in the electricity network. Chen et al. [23] presents a
charging-facility-choice model to explore the competitiveness of dynamic wireless charging
by investigating EV driver’s choice of charging facilities, between plug-in charging stations
and charging lanes with dynamic wireless charging.

The OLEV consists of shuttles (similar to conventional EVs) and a charging infras-
tructure containing a set of energy transmitters that can charge the bus’s battery remotely,
utilizing an ingenious non-contact charging component while the buses are moving over
the charging infrastructure. For the OLEV wireless charging system, Suh and Cho [24]
explore two primary features: the power supply system and the pickup system. The former
is installed beneath the road and wirelessly transmits the power; while the latter is attached
to an EV and collects the power. The OLEV adopts a Shaped Magnetic Field in Resonance
(SMFIR) technology, which effectively magnifies the electric waves Suh and Cho [25]. Fi-
nally, Suh and Cho [26], using an axiomatic design method, describes the detailed process
of the system design matter and offer the process of defining the system-level functional
requirements (FRs) and how the WPT system is designed to meet these system-level FRs.

The feasibility analysis and development of on-road charging solutions for future
electric vehicles (FABRIC) was launched by the European Union to investigate the techno-
logical feasibility, economic viability, and socio-environmental sustainability of dynamic
on-road charging EVs [27].

A feasibility study to investigate the dynamic Wireless power transfer WPT for EVs
vehicles on England’s major roads was published by the Transport Research Laboratory in
the UK [28].

Cirimele et al. [29] describe a prototypal system for dynamic inductive power trans-
mission in an overview of current state-of-the-art research and industrial projects. Similarly,
Foote and Onar [30], review current high-power WPT systems and describe the passive
elements, subsystems, devices, and techniques that have been developed to achieve high-
power levels.

A Utah State University company, named Wireless Advanced Vehicle Electrification
(WAVE), has been developing a project with two wireless charging transit buses, which are
stationary and quasi-dynamic. A prototype was implemented as a campus shuttle (called
Aggie Bus). It was equipped with a receiver and a transmitter embedded in the bus stops’
pavement [31].
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3. The Dataset
3.1. Dataset Description

Two different datasets were used for the analysis. The first one is the drive-type
network data taken from the Open Street Map (OSM), using the OSMnx [32]. The second
one consists of General Transit Feed Specification (GTFS), which defines a standard for-
mat for public transportation schedules and associated geographic information from the
Metropolitan Transportation Authority (MTA) [33].

3.2. GTFS Data

The GTFS data feeds were collected from the Metropolitan Transportation Authority
(MTA) to represent the MTA NYC bus routes and stops. The data package contains
eight text files: Trips, stops, stop times, shapes, routes, calendar dates, calendar, and
agency. Open-source Python 2.7.13, an interpreted object-oriented, high-level programming
language, was used to visualize GTFS data, focusing on MN bus transit into Static Data
Feeds (GTFS Schedule Data). Lines in this layer represent individual bus routes that follow
the route’s physical locations. They were generalized from the GTFS format, where lines
depicted individual services. Please refer to Correa et al. [34] for more details on GTFS
transit data. Figure 2 shows the number of buses from bus lines M1, M2, M3, M4, and M72
arriving at bus stop # 400,124 5 AV/E 72 ST by each hour.
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3.3. GIS Data

Each line represents the route that a specific bus takes during regular weekday rush-
hour service. The unique ID is route id, a field created by the MTA that uses the familiar
letter or number designation for buses, with distinct ids for each bus route. It was cre-
ated by the GIS Lab at the Newman Library at Baruch College CUNY as part of the
NYC Mass Transit Spatial Layers series, so that members of the public could have access
to well-documented and readily usable GIS layers of NYC mass transit features. This
dataset is intended for researchers, policymakers, students, and educators for fundamental
geographic analysis and mapping purposes.

3.4. Network Data

Drive-type network data from MN was taken from OSM using the OSMnx [32] to
extract and clear the network. The network contains nodes for road intersections and joints,
as shown in Figure 3. OSMnx downloads street network data that performs topological
correction and simplification automatically to calculate accurate edges and nodes. The
selected network types are “drive” to obtain drivable public streets and exclude service
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roads. (Figure 3a). OSMnx analyses networks and calculates network statistics, including
spatial metrics based on geographic area or weighted by distance.
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OSMnx allows classifying one-way and bidirectional streets (Figure 3b). For one-way
streets, directed edges are added from the origin node to the destination node. For two-
way streets, reciprocal directed edges are counted in both directions between nodes. This
ensures that intersections are not considered dead ends. OSMnx also allows identifying
the busiest nodes through the network, as is shown in Figure 3c.

4. Materials and Methods
4.1. Route Selection

Based on the network and median bus speed information, we selected three MN bus
routes located within the node’s least busy area in MN in Figure 3c (dark violet colored), as
the best option for actual potential implementation because it will produce less disruption
in the city than other zones, such as midtown. In this project, information was collected
from the Metropolitan Transportation Authority (MTA) data feeds for the NYC Manhattan
Transit Bus transportation services. Initially, only three Manhattan bus routes: M8, M9,
M22 (colored in green), were examined as the first analysis in the energy logistics (battery
and charging infrastructure) cost for each system Figure 4.
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After data processing, we tested the accuracy of the data obtained from GTFZ feeds,
comparing bus stops of each selected route to the real bus stops in the city, using google
street view, as is shown in Figure 5. This method allows us to eliminate potential bias in
the data collected.
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4.2. Economic System Design Method

For an EV-based transit system, the initial investment cost is fundamentally composed
of two main components: the cost of the charging infrastructure and the cost of a fleet
of vehicles. The cost is divided into the batteries’ costs, the vehicle units, and the other
charging components. The energy logistics cost accounts for the majority of the total cost of
an EV-based transit system. Therefore, understanding the cost structure of energy logistics
is critical for deciding on investments in EV-based transit systems.

Let us define Ts as the total energy logistics cost for one service route, operated with
EVs of s type, and Φs, the cost function of energy storage in the vehicles for each type s
Є{SWC, QWC, DWC}. Therefore, this cost is primarily determined by the size of the battery
in the bus and the number of buses. Let Ωs be the cost function of energy transfer for each
type s. Thus, this cost is mainly a function of the sum of the charging units. Then, the total
energy logistics cost can be estimated as:

Ts = Φs(batterysize, fleetsize) + Ωs

(
∑

i
installationcostofcharginguniti

)
(1)

Our analysis tries to find the minimum cost evaluating Ts for each type, and we try
to find the minimum cost of Ts while satisfying the service requirement. Specifically, the
EVs operate with sufficient energy in their batteries to complete a service. Therefore, the
minimum cost of Ts requires finding the least amount of investment needed for a service
using each type of EV (min Ts, s. t. sufficient energy to complete a service).

In [2] (Jang et al., 2016), there is a qualitative cost-benefit analysis for each wireless
system, depending on the battery price and infrastructure cost, as seen in Figure 6. However,
investment in the OLEV cannot only be made based on such analysis. Therefore, reports
from current OLEV and EV bus transit operations, MTA data feeds, and tools from GIS
software were utilized to develop a method for comparing the energy logistics costs for
these different types of charging systems on a chosen Manhattan bus route.
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Figure 6. Qualitative analysis of the economic benefits of different EV charging systems [35].

Allocation of chargers for each system is that SWC should be installed only at the
station (base) where the vehicles rest between services; QWC-identify where to install the
wireless chargers at a minimum cost, based on energy consumption and depletion between
stops in a route; DWC-, as the charging can be done while the vehicle is in motion, the
vehicle speed should be considered determining the allocation of chargers along the route.

The optimization problem aims to minimize the energy logistics cost by finding the
optimal decision variables. We define the minimum investment cost across the different
types of EV as follows:

SWC&QWC : min[(No.Buses) ∗ (Cost o f KWh) ∗ (Service Batery Size) ] + [(Cost o f Charger)∗(No. Chargers)] (2)

DWC : min[(No. buses) ∗ (Cost o f KWh) ∗ (Service Batery Size) ] + [(Power track cost per meter)∗
(Power track lenght) + (Cost o f Charger) ∗ (No. Power track units)]

(3)

Once we determine the charging infrastructure’s location and length, we can use
Equations (2) and (3) to optimize the minimum energy logistics cost for SWC, QWC, and
DWC systems. The cost of the battery per energy unit, charging unit, and power track per
unit length can be found [34].

4.3. State of Charge Algorithm (SoC)

The implemented SoC algorithm inputs the initial model parameters (i.e., route’s
length, units of charge, time, the longitude of charge, type of battery, and battery’s charge
power) at the time zero state and returns how much energy is available for service based on
battery size. Certain assumptions are needed, such as made-flat road, constant velocity, and
one bus size, resulting in a continuous slope of energy consumption per length (kWh/km).
Broadly, the algorithm uses iteration to solve how much available energy is left after one
route trip. The algorithm terminates when the bus service ends and calculates how much
remained energy is available for the next service, based on battery size, and the battery
SOC is plotted. MATLAB programming is used to simulate the battery’s state of charge
(SoC) algorithm throughout a route to determine how well the allocation of charging units
fit the model. The outline of the SoC algorithm is in Appendix A.

We assume that the average velocity of the bus is constant (4 mph) and the road grade
is relatively level (0), which means that battery consumption will always have the same
downward slope. Everything is a function of time, rather than displacement. The plot of
the SoC simulation is shown in Figure 7.
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A battery (capacity size of 60 kWh) simulation for the M8 bus route in Figure 7a is
shown in Figure 7b. The energy level is within the upper and lower limits. We assume
that the energy capacity of the battery is linearly proportional to the cost of the battery.
This assumption is realistic, as an EV battery pack contains multiple battery cells, so the
capacity is defined by the number of cells included in the battery pack. This method of
linear cost calculation is also widely used in the industry.

The upper and lower boundaries of the battery (coefficients) are supplied by the
battery’s manufacturers (lower = 0.2 and upper = 0.8, respectively). The energy level
should be within the lower and upper limits. In our analysis, the initial energy level is
36 kWh, as shown in Figure 7b. The input and output data for the displayed simulation are
shown in Table 1.

Table 1. Input and Output of the SoC Algorithm.

Parameter Value

Input

Route length (Km.) 7
No. of changing units along the route (units) 2

Location of the charging unit No.1 (km) 3.5
Location of the charging unit No.2 (km) 7

Avg time spent at charging unit 1 (seconds) 30
Avg time spent at charging unit 2 (seconds) 300

Track charging power (kW) 100
Battery capacity, size (kWh) 60

Output

Energy level-Lower limit (kWh) 12
Energy level-Lower limit (kWh) 48

Available battery capacity for service at time = 0 (kWh) 36
Available battery capacity after one service (kWh) 35.771

5. Results and Discussion

As shown in Table 2 and Figure 8, the data analysis conducted in this study evaluates
the economic fleet size with the current cost structure for each system. Axis x and y
represent the number of vehicles and the total investment cost for the M8 bus route. The
entire cost of the system is proportional to the battery’s full size (cost of SWC increases
linearly). Beneath this assumption, the charger is installed only at the station base and
is fixed, even if the number of Electric Vehicles grows. Thus, the energy logistics cost
is linearly proportional to the fleet. In practice, more charging capacity would need to
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be added to the base station for the SWC system to avoid delays as buses wait to be
charged, producing some non-linear discrepancies in the model. For the DWC case, the
increment rate of cost is less significant than that for the case of SWC; for a DWC system,
a growing number of EVs serves to improve the system. Therefore, smaller batteries are
more economical. The rate of change in cost against the number of EVs decreases; hence
the growing number of EVs improve the system.

Table 2. Cost Analysis of Wireless Network.

Stationary (SWC)

Route: M8 (42 Stops) M9 (64 Stops) M22 (44 Stops)

Total Dist. in km 7.0 15.7 8.9
FID Stop Station Base Station Base Station Base Station

Energy needed for service 140 140 140
Battery size (kWh) 233 233 233

No. of EVs 1.0 1.0 1.0
Battery cost per kWh 600 600 600

No. of chargers 1.0 1.0 1.0
Cost per charger 50,000 50,000 50,000

Length of Power Track
No. of Power Tracks

Power Track Cost (per m)

$190,000 $190,000 $190,000
Quasi-Dynamic (QWC)

Route: M8 (42 stops) M9 (64 stops) M22 (44 stops)

Total Dist. in km 7.0 15.7 8.9
FID Stop Station BS, 611, 1757 BS, 1720, 1769 BS, 1754, 1713

Energy needed for service 60 120 80
Battery size (kWh) 100 200 133

No. of EVs 1.0 1.0 1.0
Battery cost per kWh 600 600 600

No. of chargers 3.0 3.0 3.0
Cost per charger 50,000 50,000 50,000

Length of Power Track
No. of Power Tracks

Power Track Cost (per m)

$210,000 $270,000 $230,000
Dynamic (DWC)

Route: M8 (42 Stops) M9 (64 Stops) M22 (44 Stops)

Total Dist. in km 7.0 15.7 8.9
FID Stop Station BS, 611, 1757 BS, 1720, 1769 BS, 1754, 1713

Energy needed for service
(2/3 of bat. size) 24 80 54

Battery size (kWh) 40 133 90
No. of EVs 1.0 2.0 2.0

Battery cost per kWh 600 600 600
No. of chargers 5.0 3.0 3.0
Cost per charger 50,000 50,000 50,000

Length of Power Track 500
No. of Power Tracks * 4

Power Track Cost (per m) 600

$574,000 $310,000 $258,000
eff high 0.8
eff low 0.2

Note: Prices and equations for logistics cost was taken from: [2]; * x m at West/Christopher, y m at 9th/Broadway,
z m at 8th/Mercer (4th charger @ Base Station).
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Figure 8. M8 Route Fleet-Scale Plot Analysis.

As shown in Figure 8, the cost lines for SWC-QWC and QWC-DWC cross when the
number of vehicles is three and seven, respectively. This means that if there are less than
three cars, SWC is the most economical and if the number of EVs is between three and
seven, QWC is competitive. If the number of vehicles is more significant than seven, DWC
is the most efficient and economical. The lines with lower costs SWC for fleet < 3, QWC for
3 < fleet < 7, and DWC for fleet > 7, regardless of the charging type, should be considered
the lower bound for the wireless charging EV.

6. Conclusions and Future Work

Wireless charging technology offers the possibility of eliminating the last remaining
cord connections required to replace portable electronic devices. This technology has
significantly improved during the last decade and has led to a vast number of applications.
In this article, we have investigated the implementation of wireless charging on bus routes
in Manhattan, NYC, using OLEV technology, and developed a cost analysis of energy
logistics for the three types of wireless charging networks: stationary wireless charging
(SWC), quasi-dynamic wireless charging (QWC), and dynamic wireless charging (DWC).
However, the method of analysis and approach, as well as the structure and logic of the
model studied in this paper, is not limited to the KAIST OLEV system, and can be used for
any charging system

In other words, the DWC system is helpful when the battery costs are high, but the
costs of charging infrastructure are low. If the cost structure is the inverse, SWC is more
beneficial. The cost–benefit outcome of a QWC system is somewhere between that of the
DWC and SWC systems. The integration of wireless charging with existing transporta-
tion networks creates new opportunities, as well as challenges, for the development of
sustainable cities. This study has shown the energy logistics cost analysis for the potential
implementation of wireless power charging to an actual bus route in a congested area.

Different bus sizes and different road gradients may be added to make the model
more practical. However, more data would need to be found to determine how the energy
consumption (kWh/km) would correlate to these parameters. Given that wireless charging
infrastructure is more expensive than the common plug-in chargers, only a limited wireless
charging infrastructure (with short-scale service) might be economical.

In this paper, we provide only a qualitative analysis of different types of wireless
charging. However, there is still lots of opportunity for improvement in our study and
method. Thus, our research does not consider the number of SWC chargers needed as
the number of EVs increases. Due to the queue waiting issue, more chargers should be
required to support additional EVs. Traditional queuing theory can be used to determine
the appropriate number of chargers for an SWC system. Another interesting study for
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future research is investigating the optimal speed profile because we use only a fixed
constant velocity in the analyses and environmental impact analyses across various wireless
charging systems.

This research could provide new possibilities for using OLEV technology, network,
and bus route data to determine the optimum study area for planning out the costs of
deploying a new electric bus service network. However, the implementation of power
charging in networks is less explored and requires further investigation. Additionally,
practical challenges in performing similar analyses of several NYC bus routes, based on
the route’s EVs history, ridership, and location, can be considered the main directions for
future research.

Author Contributions: Conceptualization, C.D., G.J. and M.C.; methodology, C.D. and G.J.; software,
C.D. and G.J.; validation, C.D., G.J. and M.C.; formal analysis, C.D. and G.J.; investigation, C.D. and
G.J.; resources, C.D., G.J. and M.C.; data curation, C.D. and G.J.; writing—original draft preparation,
C.D.; writing—review and editing, C.D., G.J. and M.C.; visualization, C.D. and G.J.; supervision, G.J.
and M.C.; project administration, C.D. and G.J.; funding acquisition, C.D. and G.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Science Foundation Grant No.
CMMI-1634973, the C2SMART Tier-1 University Transportation Center and the Secretariat of Higher
Education, Science, Technology and Innovation (SENESCYT) Ecuador.

Acknowledgments: We are more thankful to Joseph Y. J. Chow, New York University, and C2SMART
Center for his guidance and support. The contents of this paper present the views of the authors who
are responsible for the facts and accuracy of the data presented herein. The contents of the paper do
not reflect any official views of any sponsoring organizations or agencies.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

State of Charge Algorithm (SoC)
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Algorithm: Battery's State of Charge  (SoC) simulation
1 : % Load empirical data 34 : % loop to create the state of charge plot
2 :  {Route length, Time, Charge (km), Battery size, Charge power} 35 : SoC = [energy_for_service]
3 : avg_dist_for_charge = route_len/charge_units 36 : Set index = 1
4 : x = avg_dist_for_charge 37 : energy = energy_for_service
5 : for i = 1:length(timec) do 38 : if times_for_charge =0 do
6 :     charge_position(i) = x 39 :   charge = energy
7 :     next_position = charge_position(i) + avg_dist_for_charge 40 :   for i = index:total_service_time do
8 :     x = next_position 41 :       soc(i) = charge - eta
9 : end for 42 :       charge = soc(i)

10 : %time spent, in seconds, to complete one service 43 :   end for
11 : one_service_time = round(route_len/ km_per_sec) 44 :   time = 1:1:total_service_time
12 : charging_time = 0; 45 :   % create SoC plot
13 : for i=1: length(timec) do 46 :   plot(time,soc)
14 :     charging_time = round(charging_time + timec(i)) 47 : else
15 : end for 48 :     for i =1:length(times_for_charge) do
16 : total_service_time = one_service_time + charging_time 49 :         charge = energy
17 : %create time array for plot 50 :         % battery drain
18 : time = 0:1:total_service_time 51 :         for k = index:times_for_charge(i) do
19 : % battery efficiency in kWk/mile for bus traveling at 4 mph 52 :             soc(k) = charge - eta
20 : eff = 2.16 * (1/1.60934); % kWh/km 53 :             SoC(end+1) = soc(k) 
21 : % convert efficiency to kWh/sec 54 :             charge = soc(k)
22 : eta = eff * km_per_sec ; % kWh/sec 55 :             index = times_for_charge(i)
23 : charge_power_per_sec = charge_power / 3600 ; % kW/s 56 :         end for
24 : % loop to find at what times will the bus start charging 57 :         %battery charge
25 : Set wait_time = 0 58 :         for j=1:timec(i) do
26 : for i =1:length(charge_km) do 59 :             SOC(j) = charge + charge_power_per_sec
27 :     times_for_charge(i) = round(charge_km(i)/km_per_sec) + wait_ 60 :             SoC(end+1) = SOC(j) 
28 :     wait_time = wait_time + timec(i) 61 :             charge = SOC(j)
29 : end for 62 :         end for
30 : % Calculate how much energy is available for service based on bat 63 :         index = index + timec(i)+1
31 : eff_high =0.8; 64 :         energy = charge
32 : eff_low =0.2; 65 :     end for
33 : energy_for_service = battery*(eff_high-eff_low) 66 :     % create S0C plot

67 :     plot(time,SoC)
68 : end if

Figure A1. Algorithm to run the State of Charge (SoC).
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